The 2003 Fort Lauderdale Consolidated Downtown Master Plan "Building a Livable Downtown" was developed in response to the recent rapid growth in the Downtown. The plan intends to transform the downtown into a livable and active urban center with strong and dynamic neighborhoods: an urban fabric of walkable, tree-lined streets; an integrated multi-modal circulation system and distinct public spaces; high quality buildings designed and oriented to provide light and air at the street level creating an exceptional urban environment. The intent includes the goal of maintaining the flexibility to allow for creative design solutions.

Based on the vision, principles and framework identified in the Master Plan, the design guidelines defined in Chapter 4 of the Master Plan, were developed to provide an effective road map to achieve the intent of the Master Plan. Since their implementation in 2003, there have been numerous positive outcomes. City agencies have been advocating the Master Plan's goals proactively, both within the project-approvals process, and through other initiatives, such as the refinement of street designs. The most recent generation of private development proposals embrace the spirit of the Master Plan, with a common desire to create a great Downtown environment.

Looking closely at the successes and shortcomings of the 2003 Master Plan, we learned that some guidelines were effective in implementing the intent of the Master Plan; that some turned out partially effective and in need of future refinement; and that elements of the Framework Plan required more specific guidelines to be fully implemented. This 2006 Design Guideline Update places a greater focus on: more specific recommendations for achieving high quality architecture and improving building scale and massing; more careful attention to the public realm including building/street relationships and design of the streetscape; and better strategies to resolve parking and other negative impacts. In addition, specific areas of the Downtown, called Thematic Planning Districts have been identified for further analysis in order to enhance and preserve their unique characteristics.

With the evolution of these guidelines, the vision of the Master Plan will become more readily achievable and Downtown Fort Lauderdale will become an even better place to live, work and play.
TABLE OF CONTENTS

CHAPTER 4: Design Guidelines

An Overview... 4.4
1 Principles of Street Design.. 4.5
2 Street Design Examples... 4.20
3 Principles of Building Design.. 4.36
4 Quality of Architecture... 4.61
5 Principles of Storefront Design... 4.69
6 Character Area Guidelines.. 4.76
7 Neighborhood Transition Areas... 4.86
8 Thematic Planning Districts... 4.88
9 Principles of Riverfront Design... 4.90
10 Implementation... 4.96
Design Guidelines can transform the image of a city. Specific, design-based suggestions applied throughout Downtown will help to achieve a number of the Framework Plan’s broader goals, especially those related to built form. The guidelines are not meant to be prescriptive, but qualitative and reflective of a design-oriented approach, that will allow flexibility to create the best possible urban environment.

The Design Guidelines within this Update combine the Design Guidelines from Chapter 4 of the original 2003 Master Plan, with a number of new and revised guidelines, which are referenced with a note at each new or revised guideline.

In general, this chapter is meant to illustrate and clarify expectations regarding the treatment of the following key relationships:

- Typical cross sections of streets
- Arrangement of pedestrian, bicycle and vehicular facilities within rights-of-way
- Streetscape and street tree planting
- Relationship of a new building to its neighbors, streets, and public spaces
- Massing and scale of new buildings, both on the street and on the skyline
- Articulation and scale of building facades, with a particular focus on ground floor activity
- Treatment and position of pedestrian and vehicle entrances, parking, and service.

The guidelines are broken down into ten sections:

1. Principles of Street Design
2. Street Design Examples
3. Principles of Building Design
4. Quality of Architecture
5. Principles of Storefront Design
6. Character Area Guidelines
7. Neighborhood Transition Areas
8. Thematic Planning Districts
9. Principles of Riverfront Design
10. Implementation
PRINCIPLES OF STREET DESIGN

S-1

Maintain a fine-grained street grid: discourage vacated City streets or alleys except for strategic public planning purposes.

With the exception of streets indicated in the Chapter 3 Framework Plan, avoid further street closings, except when absolutely necessary to improve prohibitively difficult-to-build parcels. (The Framework Plan indicates blocks along Federal Highway and Las Olas Boulevard, which would benefit from strategic street alterations). In general, maintaining the finest-grained street grid is beneficial for a variety of reasons, including the maximizing of buildable street frontages and public access, and the increased distribution of traffic flows.

Avoid further alley closings, except when absolutely necessary to improve prohibitively difficult-to-build parcels. Alleys are beneficial in the creation of a particular block type that is well suited for residential uses. Parking directly off of the alley can serve residential buildings that line the streets. Alleys can also provide access to entrances into parking structures and accommodate service needs.
4.6

PRINCIPLES OF STREET DESIGN

8-2

Utilize Traffic Calming rather than barricading streets.

Encourage the re-opening of existing street closures; discourage such closures in the future. Instead of street closures, a variety of other ‘traffic calming’ devices should be utilized to inhibit through-traffic on local streets. Many of these devices are illustrated in this chapter.

A technique well suited for local neighborhood streets in Flagler Heights and other areas is the ‘mini-roundabout’. The roundabout slows traffic and adds a distinct urban identity with landscape elements at intersections.

Another traffic calming technique is the ’speed table’, which is an elevated portion of the roadway that encourages cars to slow down and creates a more seamless pedestrian crossing.

On-street parking, practical for a number of reasons, also serves as an effective traffic-calming device.
Maximize on-street parking on all Downtown streets except major arterials (Federal Hwy & Broward Blvd).

Abundant parallel parking throughout Downtown is important for several reasons: it helps to satisfy the ever-growing need for more parking spaces without incurring the higher costs of structured parking; it contributes to pedestrian-friendly design by providing a buffer between pedestrians and fast-moving traffic; it contributes to an active street-life by depositing passengers/future pedestrians at various points along the streets who then walk to nearby destinations. It can provide a significant revenue source for the city that could contribute to the costs of an improved public realm.
PRINCIPLES OF STREET DESIGN

4.8

Provide adequate bike lanes in a planned network.

A well-connected system of bike lanes is critical to make Downtown bicycle-friendly. Bike lanes need to be properly sized and located to truly create a safe, desirable biking environment, which also can reduce car traffic.

Alongside a travel lane with on-street parking: $a = 5\text{ feet}$
Alongside a travel lane without on-street parking: $a = 4\text{ feet}$
Maximize street trees on all Downtown streets.

a) Coordinate street trees with the greenway and parks network in a Citywide parks Master Plan. The plan should articulate a coordinated vision describing a variety of tree species, including shade, flowering, and palm, and their locations throughout Downtown. Street tree designation could help define neighborhood areas (as in Flagler Heights) or particular streets (as in the Federal Highway corridor). Important factors in tree selection should include: desired shade canopy, sidewalk width, underground utility lines, maintenance, and, most importantly, the creation of a unified street image.

However, these factors should not be used to avoid providing street trees. Coordinated design of tree planting, sidewalks and underground utilities is essential.

b) Street trees should continue as close to intersection corners as possible, which will require reconsideration of driver sightline requirements. These are currently not compatible with Downtown urban design objectives.

[Figure 4.18]
Encourage location of primary row of street trees between sidewalk and street.

Street trees that are located between the sidewalk and automobile traffic provide a physical and psychological buffer that encourages a feeling of pedestrian safety. Framing the sidewalk (with buildings on one side, trees on the other) can provide consistent shade for pedestrians. Shade trees are preferable to palms where pedestrian comfort is desired. Trees also reduce the visual width of the street and frame the roadway. Both shade and palm trees can effectively achieve this effect.

Trees located directly adjacent to buildings are discouraged; they provide little shade, have limited size and growth potential, and are mostly limited to palms.
Reduce preferred maximum spacing for street trees.

Street trees should be spaced at a preferred maximum of 30’ apart for shade trees; and 22’ for palm trees to create a well-defined edge and consistent shade.

Figure 4.23 Palm trees spaced too far apart in Fort Lauderdale

Figure 4.25 Palm trees effectively spaced in Hollywood

Figure 4.26 Shade trees spaced too far apart in Fort Lauderdale

Figure 4.27 Shade trees closely spaced in Fort Lauderdale creating shade and defined street-edge
4.12

PRINCIPLES OF STREET DESIGN

9-8

Reduce horizontal clearances for trees.

Street trees should have a minimum canopy clearance (face of building to face of trunk) of 12’ for shade trees, and a minimum of 6’ for palm trees. This is less than current code requirements, which often have the perverse result of eliminating trees altogether.
Encourage shade trees along streets and palm trees to mark intersections.

At intersections where streets with shade trees converge, encourage a series of tall palms at the 4 corners to provide a visual marker.

Note: Palm trees along streets are also acceptable in some areas, such as major traffic arterials where a strong “framing” from the perspective of the automobile is desired. Palms may also be added to complement shade trees in a variety of configurations.
Eliminate County “Corner Chord” requirement.

The triangular easement required by current County corner chord regulations creates excessive building setbacks at every Downtown corner. It is designed for suburban conditions and is incompatible with Downtown areas (where the option for corners built-out to the property lines is highly desirable). The Corner Chord creates empty, poorly-defined corners, where ground floor activity is, in fact, most critical.

The necessary utility infrastructure can be located underground, within an adjacent building (with external access), or at the base or top of signal posts. These methods are common in many cities.
Encourage curb radius reduction at street intersections to a preferred maximum of 15 feet, or a preferred maximum of 20 feet at major arterial roadways.

Decreasing the curb radius standard in urban areas accomplishes two important things: it decreases the crossing distance for pedestrians. It also provides traffic calming by compelling motorists to slow down when turning, providing a safer crossing for pedestrians.
Definition

Primary & Secondary Streets: Where buildings have one frontage, this frontage is considered the Primary Street. Where buildings have two or more frontages, one is Primary and at least one is Secondary. The Primary Street is the one with the most significant pedestrian activity or overall urban importance. The Primary Street is usually, but not always, the street with the greatest right-of-way dimension. Las Olas Blvd is an example of a Primary Street that is sometimes a smaller right-of-way than the Secondary ones that cross it. Interpretation of Primary & Secondary designations vary depending on the specific site, and should be confirmed with City staff.

S-12

Discourage numerous and wide curb cuts on “Primary” streets.

While curb cuts may be unavoidable, they are generally discouraged on primary streets. Where possible, curb cuts leading to drop-offs, parking garages and drive-through services should be located off of service alleys or secondary streets (streets which are removed from the significant pedestrian-oriented activity).

Multiple access points serving the same development should also be consolidated into the fewest number of curb cuts as possible, and the width and number of lanes of curb cuts should be minimized.
PRINCIPLES OF STREET DESIGN

S-13

Encourage reduced lane widths on all streets.

Urban street standards, attempting to balance the needs of cars, people, bicycles, and transit, require narrower travel lanes and "tighter" dimensional standards than typical 'suburban' standards for several reasons: the need to fit multi-modal travel lanes within existing rights-of-way; the need to discourage excessive high-speed automobile flow in areas where pedestrians and bicycles share the street; the need to decrease the pedestrian crossing distance; and, the opportunity to provide wider sidewalks within the public right-of-way.

Table:

<table>
<thead>
<tr>
<th></th>
<th>EXISTING</th>
<th>PROPOSED</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTERIALS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A CURB</td>
<td>2"</td>
<td>1’-6"</td>
</tr>
<tr>
<td>B TRAVEL LANE</td>
<td>11’ to 12’</td>
<td>11’</td>
</tr>
<tr>
<td>C TURN LANE</td>
<td>10’ to 12’</td>
<td>10’</td>
</tr>
<tr>
<td>COLLECTORS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A CURB</td>
<td>2”</td>
<td>1’-6”</td>
</tr>
<tr>
<td>B TRAVEL LANE</td>
<td>11’</td>
<td>10’-6’</td>
</tr>
<tr>
<td>C TURN LANE</td>
<td>10’ to 11’</td>
<td>10’</td>
</tr>
<tr>
<td>LOCAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A CURB</td>
<td>2”</td>
<td>1’-6”</td>
</tr>
<tr>
<td>B TRAVEL LANE</td>
<td>10’ to 11’</td>
<td>10’</td>
</tr>
<tr>
<td>C TURN LANE</td>
<td>10’ to 11’</td>
<td>10’</td>
</tr>
</tbody>
</table>

[Figure 4.42]
Encourage reduced design speeds on all RAC streets.

Traffic speed plays an essential role in any successful pedestrian-oriented environment. Since people tend to drive at speeds that feel safe on a given road, the actual design of the road plays just as important a role as the posted speed limits in determining the speed of traffic flow. There are very few examples of successful pedestrian streets that accommodate high-speed traffic flow. Slowed or 'calmed' automobile traffic is a key component to a comfortable pedestrian friendly streetscape. While the traffic may move more slowly, overall volumes and travel times can be minimized by maintaining the integrity of the street grid, and through the use of signal timing and other traffic calming devices that do not disrupt flow (such as mini-roundabouts at residential local intersections.)

Decreased design speeds allow the reduction of roadway and intersection dimensions, balancing traffic design with pedestrian needs. Design speed Downtown should range from 15 - 40 mph depending on the street type.
Bury all power lines in the Downtown area

(located to allow for tree planting/ root systems)
CHALLENGES

Broward Boulevard is one of Downtown’s most challenging physical and psychological barriers. Recent streetscape improvements, though helpful, have not achieved a successful balance between automobile traffic and pedestrian-friendliness. Intersections, burdened by large curb radii and multiple turning lanes, are wide and difficult to cross, and the overall corridor lacks strong visual definition, due to inconsistent landscaping and building form. Broward is one of Downtown’s highest capacity and fastest-moving streets; this context does not support on-street parking, and suggests that continuous ground floor activity is unlikely in the near future. However, emphasis can be focused on: strong and continuous sidewalks buffered with landscaping, improved north-south pedestrian crossings; and, aesthetic improvements of the east-west travel corridor, creating a well-defined, dramatically landscaped, urban boulevard.

RECOMMENDATIONS

- Narrow the street travel-way dimensions by relocating existing bike lanes to other, more appropriate streets, and replacing them with planting strips to buffer pedestrian sidewalk activity. These strips should contain a new, primary row of palm trees that complements the existing, but inconsistent, rows of street trees (mixture of shade and palms) set back further from the street.

- Create a significant, raised, planting bed along the center median that contains low plantings and palm trees. This creates a visual ‘narrowing’ of the Boulevard, and provides generous and safe mid-point islands for pedestrian crossings. The median should extend to intersections, without the interruption of turn lanes, for pedestrian safety.

- Introduce pedestrian crossings at key mid-block locations, taking advantage of enlarged medians where possible. This addresses the unusual condition of extra-long blocks on Broward, and will require push-button triggered signalization.
NOTE ON STREET DESIGN EXAMPLES:
The street design examples illustrate principles and guidelines, and do not represent fully engineered solutions. Other alternatives are acceptable, as long as they satisfy the fundamental urban design principles of the Master Plan. The City has the flexibility to work with the Master Plan street design recommendations to make them compatible with changing or unforeseen conditions, and ongoing studies.
FEDERAL HIGHWAY Street Design Example
VISION FOR A “GATEWAY BOULEVARD”

CHALLENGES

Federal Highway is another key, high-capacity traffic corridor that currently acts as a barrier. Serving as a primary automobile entry into Downtown from the north and south, it should be an elegant, tree-lined, gateway boulevard. Currently, inconsistent landscaping, lack of street-oriented building uses, and excessively long turn lanes (eliminating potential landscaped medians) contribute to a general lack of aesthetic quality and pedestrian safety, unifying for the arrival to a major city. Like Broward Boulevard, pedestrian crossings should be enhanced (in the east-west direction), and the automobile travel-way should be come a well-defined, landscaped boulevard. Unlike the more vertical quality of Broward Boulevard’s rows of proposed palms, Federal Highway can provide a dramatic contrast with a denser tree canopy of shade and palm trees. It can become a grand, ‘green’ boulevard, anticipating the future redevelopment of numerous under-utilized sites. This can be accomplished without reducing traffic capacity.

RECOMMENDATIONS

- Create a wide center-median with palm trees. Turn lanes should be engineered to their minimum possible lengths, maximizing the landscaped median. A pedestrian path running down the center of the landscaped median may be desirable in certain locations.
- Create pedestrian waiting areas on the median at each intersection for safety.
- Create a continuous, planting strip along the sides of Federal Highway, to buffer the sidewalks from traffic with a variety of plantings and a primary row of shade trees.
- Encourage all future redevelopment along Federal Highway to follow a consistent build-to line (as shown on following pages) and contribute to a more vibrant streetscape.
FEDERAL HIGHWAY Street Design Example

FORT LAUDERDALE Building a Livable Downtown

[Figure 4.52] AFTER

[Figure 4.53] Key map

REVISED MAY 2007
BUILDABLE UNDER CURRENT REGULATIONS

[Figure 4.54]
NOTE ON LARGE SHADE TREES:
Large shade trees (e.g. Live Oak) should be 20’-22’ in overall height, with at least 8’ spread, 6’ clear trunk and 5”-6” caliper.

NOTE ON SUB-GRADE UNDER SIDEWALKS:
Sub-grade under sidewalk with trees to be constructed with approved structural soil system.

NOTE ON SIDEWALKS:
12’ Multi-model sidewalk
CHALLENGES
3rd Avenue has the potential to be a vibrant pedestrian-friendly ‘spine’ through the length of Downtown, passing through all three ‘Character Areas’ and connecting significant public spaces, such as the proposed Flagler Heights Community Park. The existing right-of-way is large enough to accommodate a much more interesting and multi-modal streetscape with wider sidewalks, on-street parking, a bike lane and consistent shade trees. 3rd Avenue should also be a focus for retail and other ground-floor activity.

RECOMMENDATIONS
- Narrow travel lanes to create room for expanded sidewalks and planting strips.
- Introduce on-street parking along both sides of the street, with distinctive paving that relates to the sidewalk, decreasing the visual width of asphalt.
- Introduce consistent shade trees between the parking and sidewalk, and mark intersections with tall palm trees to create a sense of hierarchy and rhythm along the street.
- Encourage active ground-floor uses, especially at key public spaces and pedestrian focal points
- Discourage all curb cuts unless absolutely unavoidable. Parking, service and other vehicular site access should be from side streets or alleys wherever possible.
3rd Avenue Street Design Example

AFTER

[Figure 4.58]

[Figure 4.59] Key map
3RD AVENUE Street Design Example

BUILDABLE UNDER CURRENT REGULATIONS

[Figure 4.60]
NOTE ON LARGE SHADE TREES:
Large shade trees (e.g. Live Oak) should be 20’-22’ in overall height, with at least 8’ spread, 6’ clear trunk and 5”-6” caliper.

NOTE ON SUB-GRADE UNDER SIDEWALKS:
Sub-grade under sidewalk with trees to be constructed with approved structural soil system.

3RD AVENUE Street Design Example
PROPOSED

[Figure 4.61] [Figure 4.62] Key map

NOTE ON STREET DESIGN EXAMPLES:
The street design examples illustrate principles and guidelines, and do not represent fully engineered solutions. Other alternatives are acceptable, as long as they satisfy the fundamental urban design principles of the Master Plan. The City has the flexibility to work with the Master Plan street design recommendations to make them compatible with changing or unforeseen conditions, and ongoing studies.
ANDREWS AVENUE Street Design Example

VISION FOR A “REVITALIZED ‘MAIN STREET’”

CHALLENGES

Andrews Avenue faces similar challenges to 3rd Avenue, and requires similar improvements in order to become an interesting, pedestrian-oriented street.

BUILDABLE UNDER CURRENT REGULATIONS
RECOMMENDATIONS

Most of the streetscape improvements described for 3rd Avenue also apply to Andrews Avenue. The scale of the streets will be similar, but an element of difference and variety is introduced by contextual differences: Andrews passes alongside F.A.T. Village and Stranahan Park, and was historically an important retail ‘main street’ presence for Downtown.

NOTE ON SUB-GRADE UNDER SIDEWALKS:
Sub-grade under sidewalk with trees to be constructed with approved structural soil system.

NOTE ON LARGE SHADE TREES:
Large shade trees (e.g. Live Oak) should be 20’-22’ in overall height, with at least 8’ spread, 6’ clear trunk and 5”-6” caliper.
LOCAL STREETS
Street Design Example
Vision for “Neighborhood Connectors”

CHALLENGES
A number of existing local, primarily residential streets have right-of-ways ranging from 40 to 60 feet. Current regulations have the potential to result in either canyon-like streetscapes, or wide-open formless streetscapes, or a combination of both. This will not achieve a public realm with a neighborhood feeling. Street and Building Design Guidelines can shape a range of residential building forms and densities into a harmonious, pedestrian-oriented streetscape. Existing streets also suffer from inconsistent curb conditions and street trees.

RECOMMENDATIONS
- Minimize lane widths to allow for on-street parking on both sides of the street. Distinctive paving in parking lanes should relate to sidewalk paving to decrease the visual roadway width. The parking lane should be broken up by occasional planted bulb-outs, which may also contain street trees along the narrowest streets.
- Introduce consistent shade trees between the sidewalk and roadway/parking lane. Mark intersections with taller palm trees.
- Introduce traffic calming devices at intersections. Mini-roundabouts are recommended at all local-to-local intersections, and provide for various elements (landscape, fountain, etc.) to terminate vistas along these streets. This technique is common in many cities, and allows the re-opening of currently barricaded streets in areas such as Flagler Heights.
- The building to building setbacks allow for a ‘green’ semi-private planting area between the sidewalk and building. This space may also be occupied by entry stairs, or stoops, and projecting bay windows (or other architectural elements.) This space should not be paved (except at building entrances), and should not be used for parking.
- Discourage all curb-cuts except where absolutely unavoidable. Parking, service and other vehicular access should be from side streets or alleys wherever possible.
LOCAL STREETS Street Design Example

AFTER

[Figure 4.69]

[Fort Lauderdale] Building a Livable Downtown

[Figure 4.70] Key map
LOCAL STREETS Street design example

BUILDABLE UNDER CURRENT REGULATIONS

[Figure 4.71]
NOTE ON LARGE SHADE TREES:
Large shade trees (e.g., Live Oak) should be 20’-22’ in overall height, with at least 8’ spread, 6’ clear trunk and 5”-6” caliper.

NOTE ON SUB-GRADE UNDER SIDEWALKS:
Sub-grade under sidewalk with trees to be constructed with approved structural soil system.

NOTE ON STREET DESIGN EXAMPLES:
The street design examples illustrate principles and guidelines, and do not represent fully engineered solutions. Other alternatives are acceptable, as long as they satisfy the fundamental urban design principles of the Master Plan. The City has the flexibility to work with the Master Plan street design recommendations to make them compatible with changing or unforeseen conditions, and ongoing studies.

PROPOSED

[Figure 4.72]

[Figure 4.73] Key map
In general, most of the building “streetwall” should meet the setback lines, except in cases of special entry features, architectural articulation, or in the instance of well-defined public spaces (see Principles of Building Design B-2). When all the buildings along a street follow this principle, the street forms a well-defined, continuous corridor (with some variation) that encourages walkability and activity along its length.

Figure 4.74 Excessive and inconsistent building setbacks create a poorly-defined street corridor

Figure 4.75 A uniform, pedestrian-friendly street wall in Coral Gables resulting from buildings built to an appropriate setback line

Figure 4.76 Discouraged

Figure 4.77 Encouraged
Framing the street: encourage aggregation of site open space requirements as pedestrian public space (instead of unusable, leftover ‘green’ perimeter).

Too often, open space site requirements result in unusable, suburban-style landscaped zones between the sidewalk and building. Dimensions and treatments often vary, resulting in a discontinuous, inefficient use of open space. As a result, the open space is ‘wasted’ rather than contributing to a vibrant public realm. Open space should be consolidated and used to create pedestrian-friendly spaces, parks, and plazas; ‘hard’ surfaces mixed with landscaping should be encouraged to create usable, urban plazas.
Framing the street: minimum and maximum building ‘street-wall’ heights.

‘Streetwall’ height is the vertical dimension (‘b’) of a building ‘shoulder’ above which the building begins to step back (‘c’). This height should vary depending on the width of the street and character of the area.

Varying streetwall heights in each of the Character Areas described later in this chapter will create different types of streets and street sections. Building form will be used to distinguish different areas of the Downtown by creating a variety of different street-level pedestrian experiences.

(Refer to Character Area Guidelines later this chapter for details)
Framing the street: encourage maximum building ‘streetwall’ length of 300’.

The 300 foot dimension, while encouraging streetscape variety, does not create varied building configurations along narrow-block frontages, which typically measure less than 300 feet. The principle of minimizing the impact of very long building frontages is desirable. Site-specific solutions need to ensure that the treatment and articulation along elevations provides attractive and pedestrian-friendly walking environments.

Building streetwalls in the Near Downtown and Urban Neighborhood that exceed 300’ in length should be encouraged to create variation in the physical design and articulation of the street-wall through the following examples:

- division into multiple buildings/ but without superficial facade parapets

LESS PREFERRED

- a break/ articulation of the façade; OR,
- significant change of massing/ façade design

PREFERRED

- a break/ articulation of the façade; OR,
- significant change of massing/ façade design

PREFERRED

- a break/ articulation of the façade; OR,
- significant change of massing/ façade design

PREFERRED

- a break/ articulation of the façade; OR,
- significant change of massing/ façade design

NOTE

Public plaza/ open space lined with active ground floor uses

NOTE

Line internal pedestrian, public “vias” with active ground floor uses; OR no “vias” with separate buildings abutting one another

Figure 4.83

Figure 4.84

Figure 4.85 Encouraged Streetwall Length

Figure 4.86
Preferred Maximum “floorplate” area for towers.

Reducing tower floorplate areas will dramatically change the visual impact of tall buildings on the skyline, the street environment, and on views from nearby buildings.

“Floorplate” areas should vary according to Character Area. (Refer to Character Area Guidelines in Chapter 4 for details.)

Note: Preferred floorplate GSF doesn’t include open balcony area.

Varying floorplate areas in each of the Character Areas described later in this chapter will encourage more slender towers (allowing more than one tower per project in some cases) and discourage massive, bulky, ‘wall’-type buildings with larger floorplates, thereby providing more light and air to streets/open spaces below. (Maximum floorplate area below shoulder height is not specified.)
Where buildings with towers are located with frontages on multiple streets, the towers are encouraged to orient towards the “Primary Street”.

If a tower building has only one frontage, then this frontage is considered the Primary Street. If a Primary Street has a right-of-way < or = to 60 feet, then Building Design Principle B-7 applies.
If towers are located on streets with a right-of-way < or = to 60 feet, increased stepbacks from the 'shoulder' are encouraged to reduce the impact on the street (for Character Areas other than Downtown Core).

The preferred minimum stepback in these cases is 30 feet, and additional buildable area is allowed within a 60 degree triangle above the 'shoulder'. If the tower is located on a corner site, where both streets are < or = to 60 feet, increased stepbacks from the 'shoulders' are encouraged along both streets, provided that the stepbacks do not preclude a tower with the preferred maximum gsf.

Where atypical lot dimensions (such as unusually narrow blocks) occur, the principle of minimizing the impact of higher buildings on smaller streets and lower scale building fabric still applies, but site-specific solutions need to be found for placement of higher elements. One way of achieving this guideline could be through the development of a Precinct plan.

Figure 4.94 Example of a non-tower building on a narrow street. When towers do occur on narrow streets, they are encouraged to have additional shoulder stepbacks (< or = 60 ft wide) to reduce:
- Impacts on light and air
- Loss of neighborhood character

Figure 4.95 PREFERRED MIN 30'

Figure 4.96
Surface parking: discourage parking and access along the Primary Street frontage.

In general, surface parking along street frontages should be avoided. However, when it is unavoidable, access and frontage should be limited to Secondary Streets. Parking lots create ‘dead’ spaces along pedestrian-oriented streets, where street-life and street-space definition are lost. Parking within the interior of a block with discrete access is a preferred alternative.

DEFINITION

Primary & Secondary Streets: Where buildings have one frontage, this frontage is considered the Primary Street. Where buildings have two or more frontages, one is Primary and at least one is Secondary. The Primary Street is the one with the most significant pedestrian activity or overall urban importance. The Primary Street is usually, but not always, the street with the greatest right-of-way dimension. Las Olas Blvd is an example of a Primary Street that is sometimes a smaller right-of-way than the Secondary ones that cross it. Interpretation of Primary & Secondary designations vary depending on the specific site, and should be confirmed with City staff.
Parking garages:
- Encourage access from secondary streets and alleys.
- Encourage street level activities and minimize visual exposure of parking with active space on the ground floor of a parking garage.
- The upper floors of a parking garage should not be visible along primary streets, waterways, and parks (see Q5). Active spaces on these upper floors along primary streets, waterways, and parks are encouraged as a preferred design.

Parking garage design should be well integrated with the overall building design.

In order to create vibrant streetscapes, structured parkings encouraged to be shielded from streets with a ‘liner’ of active uses (residential/ commercial/ office).
Where shielding by active uses cannot be achieved, beyond the first floor, exposed parking garages should be limited to secondary streets, starting as far back from the Primary Street intersection as possible. Where exposed to street, parking garages should be disguised through a variety of architectural screening solutions (such as windows, landscape elements, architectural panel systems integrated with overall building design, etc.).

Liner uses are encouraged to provide active, occupied space (residential, commercial, cultural, etc.) at the street level and upper floors along primary streets, parks, and waterway.

Landscaping, plazas, or active uses are encouraged to conceal or enhance rooftop parking areas.

Active building uses are encouraged to cover entire street frontage ‘b’

Minimum criteria for liner depth ‘a’:

<table>
<thead>
<tr>
<th>LOT DEPTH</th>
<th>ground</th>
<th>2nd & up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office</td>
<td>40’ min</td>
<td>30’ min</td>
</tr>
<tr>
<td>Retail/cultural</td>
<td>40’ min</td>
<td>30’ min</td>
</tr>
<tr>
<td>Residential/live-work</td>
<td>25’ min</td>
<td>25’ min</td>
</tr>
</tbody>
</table>

Where retail is not feasible:
- townhouses w/ individual entry
- office/ conference room space
- other active/ transparent use

REVISED MAY 2007

[Figure 4.103] Parking integrated with building design – does not impact pedestrian activity on-street, and does not dominate view
4.46

PRINCIPLES OF BUILDING DESIGN

8-10

Encourage main pedestrian entrance to face street.

The main entrance to a building is encouraged to face the street and not a parking lot. In general, the more pedestrian entrances along a street, the more active and interesting the street becomes. Entrances along the street encourage pedestrian activity, accommodating building-users arriving by foot, from on-street parking, and from transit. If interior-block parking exists, there may also be secondary entrances from the parking area, or mid-block pedestrian passages from parking areas to the street. Buildings set back from the street behind surface parking lots are discouraged, since they draw pedestrian life away from the streets, and create unpleasant approaches to their entrances for people arriving at the building on foot.

![Figure 4.106](image1.png)

DISCOURAGED

![Figure 4.106](image2.png)

ENCOURAGED
Building entrances set back behind large ‘motor court’ drop-offs can also compromise the continuity of pedestrian street-life. Modest drop-off areas, without curb-cuts, are easily accommodated along streets (often through the removal of on-street parking at the building entrance location), or within an adjacent ground floor parking structure.
Maximize active uses & ‘extroverted’ ground floors with retail in strategic locations.

Using the Retail Diagram of the Framework Plan (Figure 3.81) as a starting point, the City should undertake an in-depth retail analysis to determine the most effective and realistic retail opportunities throughout Downtown. Active ground-floor retail should be focused along strong pedestrian-oriented corridors and scattered in strategic neighborhood locations, such as along the edge of a neighborhood ‘square’. Ground floor retail should not be required for all new development; rather, it should be encouraged in market-supported areas that contribute to a well-planned, interconnected, active streetscape.

Where ground floor retail is not appropriate, other ‘extroverted’ program elements should be located on the ground floor or wherever possible such as residential common areas. These uses should have transparent and open facades and avoid blank walls wherever possible.
Encourage pedestrian shading devices of various types.

Pedestrian comfort and visual interest can be achieved through the consistent use of a variety of shading devices. These elements may project beyond building setback lines. Some options include:

- Awnings
- Arcades
- “Eyebrow” overhangs
- Miscellaneous shade structures

(Shading devices should be used in conjunction with street trees.)
Encourage balconies and bay windows to animate residential building facades.

While balconies and bay windows add to the quality of residential units, they also contribute to the visual variety of the streetscape. Highly articulated building facades can break up the potential monotony of large-scale buildings. Balconies, in particular, take advantage of Fort Lauderdale’s year-round climate by lining the streetwalls with people and living spaces.

Balconies and bay windows may project beyond building setback lines (to be coordinated with City Staff on a case by case basis, and subject to potential conflicts.) When possible, depth of balconies should provide outdoor space that is usable and accessible by apartments. “False” balconies are discouraged.
In residential buildings, encourage individual entrances to ground-floor units (particularly in the Urban Neighborhood Character Area).

Multiple residential entrances create increased and well-distributed pedestrian activity, and increased security (actual and perceived) on the street by adding activity and “eyes on the street”, especially in residential areas with little or no retail. Multiple entrances also create a more human-scaled, regular rhythm along the street.
High rises to maximize active lower floor uses and pedestrian-oriented design at ground floor.

Larger building types, such as high-rises, often fail to address the importance of active ground floor uses and pedestrian-oriented design. This can be the result of an inappropriate prioritization of car access over pedestrian access, and other factors. Therefore, extra effort must be made to integrate these larger buildings into the fabric of a continuous pedestrian-oriented urban environment by utilizing various strategies described in this chapter. Key among these is the addition of lower scale active uses, such as retail or additional residential, at the perimeter of the site.
B-16

Building Design guidelines do not apply to Civic Buildings and Cultural Facilities.

Civic or government buildings, cultural facilities, and other special monuments should have particular prominence within the Downtown. In the tradition of great examples from many cities around the world, these buildings should have greater freedom in form and architectural expression. These signature landmarks of city-wide importance will stand out by being the “exception to the rule”, and have a greater impact when surrounded by strong and well-defined streetscapes which are encouraged elsewhere in this chapter.
Discourage development above rights-of-way (air rights)

(Encourage building types appropriate to lot size and block structure)

Pedestrian and vehicular bridges over alley rights-of-way may be acceptable with an integrated design.
Mitigate light pollution:

- Minimize "light trespass" (light shining in windows) by precluding unshielded floodlights, high wattage pedestrian lights, wall packs, and other unshielded light sources that are improperly located and poorly aimed.

- Minimize light pollution (uncontrolled light traveling into atmosphere) that contributes to "sky glow" by avoiding unshielded light sources and excessively high lighting levels that are improperly located and aimed.

- Minimize glare.

- Utilize lighting to maintain the perception of safety without contributing to excessive light pollution.

- Light "temperature" (color): yellow light (low pressure sodium) discouraged; white light (metal halide and others) encouraged.

Mitigate noise pollution:

- Mechanical equipment, exhaust fans, generators and other similar noise-producing equipment should be muffled and directed away from streets, public spaces, and adjacent properties.
Vertical open space between towers on adjacent lots: Towers are encouraged to maintain vertical open space along side and rear lot lines: minimum horizontal distance 'a' = 30 feet

Applies above shoulder height (see Character Area Guidelines in Chapter 4)

Abutting property owners can coordinate tower placement (and deviate from 30’ requirement) as long as they maintain 60’ clearance

* with special review for non-parallel building facades and special architectural features
B-21 (ADDED MAY 2007)

Vertical Open space between multiple towers on a single large development site:

- Maximum floorplate areas apply
- Multiple towers no less than 60’ apart

[Figure 4.134]
DISCOURAGED

[Figure 4.135]
ENCOURAGED
Residential: Encourage minimum ground floor elevation of 2’ above public sidewalk level for individual ground floor entrances to private units.
Avoid drive thrus in the wrong places

Discourage drive-thru configurations that detract from streets’ spatial definition, are visible from public rights-of-way, or that add curb cuts to primary or secondary streets.
Encourage green roofs as visual amenities that provide a combination of usable, landscaped spaces (recreation & open space benefits) and sustainable roof treatments (environmental benefits).
SKYLINE DRAMA

Encourage towers to contribute to the overall skyline composition

Buildings with tower elements should be designed to contribute to the overall skyline composition of Fort Lauderdale. Views of the skyline from various angles and locations should be studied in skyline renderings. Buildings with special prominence in key locations should have architectural/sculptural elements designed to be seen from the appropriate distances. Towers that would block key view corridors, or create awkward juxtapositions, should be sited to minimize any potential negative impacts.
Encourage expressive tops for tall buildings above 37 stories in Near Downtown & Downtown Core

Encourage towers to contribute to the skyline through architecturally expressive ‘tops’. Examples of design approaches include but are not limited to:

- Sculpted roof forms
- Terracing of uppermost levels
- Vertically expressive roof forms
- Unusually shaped roof forms
- Innovative ‘green’ elements
- Special Materials and Lighting
- Integrated with the architecture of the building
- Public uses and viewing decks at upper levels
Encourage high quality materials for the entire building, with a special emphasis on detailing and durability for the first 2 floors.

Encourage richer materials, more intensive details and lighting to enhance pedestrian views at first 2 floors.

Encourage durable exterior materials such as: stone, masonry, metal paneling, precast concrete panels and details and glass.

Avoid less durable materials, such as EIFS, at first 2 floors.

Avoid less durable materials, such as vinyl or aluminum siding, molded plastic or fiberglass details and moldings.
In preservation and adaptive re-use of buildings with historic value:

- Entire structure should be maintained;
- Historic fabric should be restored;
- Significant interior spaces maintained;
- Existing scale and massing should be respected;
- Sensitive, respectful rooftop & adjacent additions are permitted.

[Figure 4.159] [Figure 4.160]
Where structured parking must be exposed to the street, exceptionally creative solutions should be explored:

The City should implement special architectural review techniques to include:

- Dramatic and/or elegant building form with a compelling street presence
- Consistent and integrated architectural details

High quality, durable exterior materials
Richer material palette, more intensive details and lighting encouraged for the street level.
Encourage architecture to respond to the unique nature of the south Florida environment.

- Solar orientation
- Wind direction
- Rain
Encourage a rich layering of architectural elements throughout the building, with special attention to facades below the ‘shoulder’ level. Examples of facade composition include, but not limited to:

- Variety of window types and scale
- Changes in material
- Recess lines
- Roof gardens
- Expression of building openings
- Bay windows
- Balconies
- Overhangs
- Sunscreens
- Low garden walls
Encourage a range of architectural styles that each create a strong identity, strive for the highest quality expression of its chosen architectural vocabulary.

Avoid design of a single building that is meant to imitate the look of multiple older buildings or mimic older buildings in a ‘fake historic’ style.
Refinement of Retail Location Strategy

Undertake a detailed Retail Study for Downtown

Create a diversity of preferred retail location located ‘where it counts’

Encourage ground floor retail in “preferred locations” shown at right
Encourage a combination of storefront styles & types in adjacent buildings, or within single buildings, to create variety and visual interest at the street level.
SF-3

Encourage durable materials for ground floor retail & cultural uses

Encourage metal, stone, glass, concrete, plaster

Discourage plywood sheathing, vinyl / aluminum siding, EIFS

Discouraged [Figure 4.181]

Encouraged [Figure 4.182]
Encourage 15' minimum floor to floor height and, encourage interior ground floor flush with adjacent public sidewalk.

[Figure 4.183]
SF-5
Added May 2007

Encourage significant glass coverage for transparency & views
Discourage tinted glass
Opaque, smoked, or decorative glass for accents only
It is preferred that the overall storefront dimensions are primarily transparent glass
Ground floor window tops no lower than 9’ above sidewalk

Encourage restaurants to provide clear visual and physical connections to outdoor seating
Encourage pedestrian shading devices of various types (min. 5’ depth)
SF-7

Encourage multi-level storefront displays to disguise unfriendly uses or blank walls

SF-8

Encourage well-designed night-lighting solutions to:

- Animate the street after business hours
- Spotlight tenant’s merchandise without distracting reflections or light spillage onto adjacent properties

[Figure 4.193] [Figure 4.194] [Figure 4.195] [Figure 4.196]
CHARACTER AREA GUIDELINES

3 Distinct Character Areas

CHARACTER AREAS

‘Character Areas’ of distinct quality will create a variety of urban experiences throughout the RAC. Creating a pedestrian ‘sense of place’ in an area as large as the Downtown RAC depends on the development of areas with distinctive character and special qualities. These ‘Character Areas’ are based on the existing street grid, development patterns, edges, walking distances, and other factors; they reinforce and strengthen existing and emerging development patterns. The Framework diagram illustrates three different character areas. Each exhibits unique urban form and public space characteristics while sharing common themes relating to pedestrian-oriented design. While all three are essentially mixed-use, they are distinguished by varying building forms and ratio of residential to commercial uses.
CHARACTER AREA GUIDELINES

<table>
<thead>
<tr>
<th>DOWNTOWN CORE</th>
<th>NEAR DOWNTOWN</th>
<th>URBAN NEIGHBORHOOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use:</td>
<td>Use:</td>
<td>Use:</td>
</tr>
<tr>
<td>Mixed use “center”</td>
<td>Institutional, retail, and office</td>
<td>Primarily residential</td>
</tr>
<tr>
<td>More commercial/civic</td>
<td>More housing variety</td>
<td>Community retail & employment</td>
</tr>
<tr>
<td>High density housing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Form:</td>
<td>Form:</td>
<td>Form:</td>
</tr>
<tr>
<td>Verticality and density characterized by slender towers with minimal step-backs among mixed lower buildings. A ‘central-business-district’ feeling is created by the ‘forest-like’ arrangement of vertical towers and a strong skyline image.</td>
<td>Strong framing of the street defined by emphasis on 6-8 story building ‘shoulders’ with towers stepped back above.</td>
<td>A varied neighborhood scale including a mix of housing types such as townhouses and apartment buildings. Buildings step back above defined bases, and vertical elements emphasize primary streets.</td>
</tr>
</tbody>
</table>

[Figure 4.198]
CHARACTER AREA GUIDELINES

These guidelines are intended as a road map by which buildings are designed and built in the Downtown such that they contribute to the creation of a livable and active urban center with strong and dynamic neighborhoods: an urban fabric of walkable, tree-lined streets; an integrated multi-model circulation system and distinct public spaces; high quality buildings designed and oriented to provide light and air at the street level, creating an exceptional urban environment. Although following this road map will lead to buildings that meet the vision, principles and goals of the Master Plan, creative designs that vary from these guidelines, while clearly meeting their intent, will also be considered.

DOWNTOWN CORE

Max. Height: no height limit

Building Type: building shoulders, stage 1, stage 2, and stage 3 towers.

Special Review for projects above 37 floors

Preferred Max. Floorplate Size:
- **Office:** 32,000 SF no max to 9 floors
- **Residential:** 12,500 – 18,000 SF no max to 9 floors

NEAR DOWNTOWN

Max. Height: 30 floors (Preferred)

Building Type: Building Shoulders, Stage 1 and stage 2 towers.

Preferred Max. Floorplate Size:
- **Office:** 32,000 SF no max to 7 floors
- **Residential:** 12,500 – 18,000 SF no max to 7 floors

URBAN NEIGHBORHOOD

Max. Height: 6 floors (Preferred)

12 floors by “conditional use process” per ULDR (where allowances for additional height are permitted for specific locations pursuant to the ULDR, then the ULDR shall control)

Building Type: Building shoulders and stage 1 towers.

Preferred Max. Floorplate Size:
- **Office:** 16,000 SF no max to 5 floors
- **Residential:** 10,000 SF no max to 5 floors

30+ Floors

22 Floors

9 Floors

12 Floors

6 Floors

ADDED MAY 2007
CHARACTER AREA GUIDELINES

[Figure 4.200] The Downtown RAC with Character Area designations

Key:
- Downtown Core
- Near Downtown
- Urban Neighborhood
Character Area Guidelines

Area 1: Downtown Core

1-A

Frame the street with appropriate street-wall heights.

1-B

Special architectural design encouraged for buildings over 37 floors (Signature Tower).

Figure 4.201 Key Plan for Character Area 1: Downtown Core

Figure 4.202

Figure 4.203

Non-Residential

Definition

Floor:

Habitable levels of space including parking levels, however not including ground floor mezzanines that are less than 50% of the ground floor area.

Revised May 2007

Figure 4.201

1: Downtown Core

Figure 4.202

Figure 4.203

Non-Residential
Encourage slender towers to complement the skyline and provide more light & air to streets/ open spaces below

18,000 sf max.(Preferred)
BUILDINGS UP TO 15 FLOORS
RESIDENTIAL

12,500 sf max.(Preferred)
BUILDINGS ABOVE SHOULDER(WHEN OVER 15 FLOORS)

* Special design and development encouraged for buildings above 37 floors (Signature Tower)

*SPECIAL DESIGN & DEVELOPMENT CONSIDERATIONS:

Requirements for representation of skyline views from various viewpoints.

Participation in public initiatives: i.e. upper level public amenities, street level uses, and additional public improvements, that will benefit the development project and its environs.

Dramatic and/or elegant building form with both a compelling street and skyline presence.

Consistent and integrated architectural details.

High quality materials.
CHARACTER AREA GUIDELINES

AREA 2: NEAR DOWNTOWN

2-A Frame the street with appropriate streetwall height

Building ‘Shoulder’ guidelines:

Encourage more human-scaled “framing” of the street.

Note: Area above 7 floors allows for additional bulk in non-tower building

2-B Encourage maximum building height of 30 floors

DEFINITION

FLOOR: Habitable levels of space including parking levels, however not including ground floor mezzanines that are less than 50% of the ground floor area.
Encourage more slender towers to complement the skyline and provide more light & air to streets/open spaces below. Note: Tower Guidelines on this page are alternatives and should not be combined in a single tower.

18,000 sf max. 12,500 sf max.
3-A
Frame the street with appropriate streetwall height.

3-B
Townhouses are a suitable option, especially on alley blocks.
Encourage neighborhood-scaled streetscapes

Building “Shoulder” and Tower guidelines:

Shoulders:
Encourage height limit of 6 floors.

Tower:
Encourage maximum of 12 floors, consistent with the conditional use process outlined in the City’s ULDR.
NEIGHBORHOOD TRANSITIONS
TRANSITION TYPE I

TRANSITION AREA TYPE I

Enforce existing RAC-CC height transition areas (blue areas on diagram): 150’ max. height at boundary, increased 1’ for every 1’ of setback from district boundary for distance of 100’

Expand existing RAC-CC height transition areas (to include pink areas): where RAC-CC zone abuts zones with height limit = 150’ or less (pink areas are expansion)
TRANSITION AREA TYPE II

Where RAC zones abut Residential Zoning Districts (max height 35’-55’), encourage a mid-block or 200’ wide, whichever is less, “height transition zone” (green areas on diagram): see section for height limit.

No transition zones needed where RAC zones abut zoning districts with equal or greater height limits.
SPECIAL / THEMATIC DISTRICTS

Strengthen Definition/ Concepts for Special Districts:

- Arts & Entertainment/ Cultural District
- Government Campus
- F.A.T. Village
- Judicial Campus
- River Plan
ARTS & ENTERTAINMENT/CULTURAL DISTRICT

Expand existing Arts & Entertainment District
Require cultural component as part of large development projects
Potential artist live/work units
Potential new theaters, museums, galleries
Strong public art focus in streetscape design

GOVERNMENT CAMPUS

Combined City/County government campus
Mixed-use residential, office and retail
Pedestrian-friendly streetscapes
Links to multi-modal transit
Public open space
High quality civic architecture

FLAGLER ARTS & TECHNOLOGY VILLAGE (F.A.T.)

Vibrant, mixed-use with a significant arts & technology focus
Maintain distinctive architectural character of low-rise warehouse architecture
Active street-life

JUDICIAL CAMPUS

Strengthen existing courts-district south of the River
Revitalize underutilized sites
Create new active relationship to Riverwalk area
Minimize negative urban design impacts of perimeter security requirements
Create and maintain waterfront street and pedestrian connections to the River, to enhance the visual presence of the river and increase physical public access.
Create and maintain continuous public access along both sides of the river

[Figure 4.225]

[Figure 4.226]
Maintain and create strong pedestrian connections to the riverfront with wider sidewalks, double row of trees, increased building setbacks and active ground floor uses
Create at least one key pedestrian gateway from each riverfront development to public riverwalk

[Figure 4.229]
Develop a comprehensive Riverwalk Master Plan (Small Area Plan):

Divide the Downtown Riverwalk into separate character areas

5 different Riverwalk character areas, with unique setback, stepback, hardscape/softscape ratios, and palette variations

Character areas range from more-urban-active to less-urban/passive

In order to further activate the Riverwalk, small scale open cafes and dining venues can be introduced along the river’s edge adjacent to restaurants in a principal building. These open air structures should be periodic and limited so as to not inhibit views and access along the Riverwalk.
Encourage riverfront towers to orient the narrowest dimension parallel to the river’s edge.

Provide a building stepback above the 3rd floor for buildings facing directly onto (or across the street from) the Riverwalk.
IMPLEMENTATION

I-1

ADDED MAY 2007

Develop an evolving catalogue of high-quality precedents for multiple building types, for reference by developers.